MRSPTU M.SC. (MICROBIOLOGY) SYLLABUS BATCH 2021 ONWARDS (2 YEARS COURSE)

Total Credits = 29

	SEMESTER 1 st	(Contact	Hrs.		Mark	S	Creadita
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Total	Credits
MMBLS1-101	General Microbiology	3	1	0	40	60	100	4
MMBLS1-102	Bacteriology	3	1	0	40	60	100	4
MMBLS1-103	Virology	3	1	0	40	60	100	4
MMBLS1-104	Mycology and Plant Pathology	3	1	0	40	60	100	4
MMBLS1-105	Microbial Physiology & Biochemistry	3	1	0	40	60	100	4
MMBLS1-106	Biostatistics	3	1	0	40	60	100	4
MMBLS1-107	Microbiological Techniques-I Practical	0	0	4	60	40	100	2
MMBLS1-108	Microbiological Techniques-II Practical	0	0	6	60	40	100	3
	Total	-	-	-	360	440	800	29

Total Credits = 24

SEMESTER 2 nd		Contact Hrs.		Hrs.	Marks			
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Total	Credits
MMBLS1-201	Concepts in Immunology	3	1	0	40	60	100	4
MMBLS1-202	Clinical & Medical Microbiology	3	1	0	40	60	100	4
MMBLS1-203	Microbial Genetics	3	1	0	40	60	100	4
MMBLS1-204	Molecular Biology and Genetic Engineering	3	1	0	40	60	100	4
MMBLS1-205	Environmental Microbiology	3	0	0	40	60	100	3
	Lab Techniques in Clinical Microbiology & Immunology Practical	0	0	4	60	40	100	2
MMBLS1-207	Applied Microbiology Practical	0	0	6	60	40	100	3
	Total	-	-	-	320	380	700	24

MRSPTU M.SC. (MICROBIOLOGY) SYLLABUS BATCH 2021 ONWARDS (2 YEARS COURSE)

Total Credits = 24

	SEMESTER 3 rd	(Contact	Hrs.		Mark	5	Credits
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Total	Creatis
MMBLS1-301	Food Microbiology	3	1	0	40	60	100	4
MMBLS1-302	Environmental Biotechnology	3	1	0	40	60	100	4
MMBLS1-303	Industrial Microbiology	3	1	0	40	60	100	4
MMBLS1-304	Computer Applications	3	0	0	40	60	100	3
XXXXX	Open Elective***	3	1	0	40	60	100	4
MMBLS1-305	Food Microbiology Lab	0	0	4	60	40	100	2
MMBLS1-306	Environmental & Industrial Microbiology Lab	0	0	6	60	40	100	3
	Total	-	-	-	320	380	700	24

Total Credits = 23

	SEMESTER 4 th		Conta	et Hrs.		Mark	s	Credits
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Total	
MMBLS1-401	Recent advances in Microbiology	3	1	0	40	60	100	4
$MMRISI_407$	Advances in Industrial Microbiology	3	1	0	40	60	100	4
YYYYY	Elective Course**	3	1	0	40	60	100	4
XXXXX	Open Elective***	3	1	0	40	60	100	4
MMBLS1-403	Advanced Practical in Microbiology	0	0	6	60	40	100	3
MMBLS1-404	Research Assignment	0	0	6	60	40	100	3
MMBLS1-405	Field Study	0	0	2	60	40	100	1
	Total	-	-	-	340	360	700	23

* Based on seminars to be delivered by M.Sc. IVth semester students. Since each year the chosen topics will be different therefore no syllabus can be defined in sections. The exam of the above will be conducted internally.

****** Elective courses

MMBLD1-411	Biochemical & Biophysical Techniques
MMBLD1-412	Waste Recycling

*****Open Elective Courses** will be selected from scheme of courses of other Departments.

Overall Marks / Credits				
Semester	Marks	Credits		
1^{st}	800	29		
2 nd	700	24		
3 rd	700	24		
4 th	700	23		
Total	2900	100		

GENERAL MICROBIOLOGY				
Subject Code: MMBLS1-101	L T P C 3 104	(Duration: 60hrs)		

Course Objective:

To introduce to the students regarding various kinds of microbes in terms of their structure, growth& collection of clinical samples their processing and identification.

Course Outcomes:

Describe/explain the processes used by microorganisms for their replication, survival, and interaction with their environment, hosts, and host populations

Unit-1

Historical developments of microbiology, spontaneous generation theory, contribution of Leeuwenhoek, Pasteur, Koch, Needham, Lister, Winogradasky, etc., methods for isolation of pure culture, scope of microbiology.

Unit-2

Brief account of organization, classification of microorganisms. Differences between prokaryotic and eukaryotic cells. Cell cycle, mitosis, meiosis.Overview of bacterial cell structure, (size, shape, arrangement, membrane, cell wall, cytoplasmic inclusions, mesosomes, flagella and motility, slime, capsule, pili, chemotaxis, endospore).

Unit-3

Bacterial genome and its organization. Brief account of fungi, structure, physiology and classification. Brief account of viruses (bacteriophages) structure, life cycle (lytic and lysogenic). Reproduction and Growth: Life cycles of representative microorganisms including bacteria, fungi and viruses, population growth and its measurement,

Unit-4

Effect of environmental conditions on growth pH, temp. aerationetc, continuous culture, diauxic, synchronous growth cultures and anaerobic cultures. Control of microbes by physical and chemical agents. Antibiotics, properties and mode of action; Drug resistance and its significance. Antibiotic sensitivity test.

Unit-5

Industrial uses of bacteria, yeast & molds. Microscopy: Principles and applications in microbiology, brightfield microscopy, dark field microscopy, fluorescence and immunofluorescence microscopy, phase contrast and electron (transmission and scanning) microscopy. Staining of microorganisms.

Books Recommended:

- Stanier, R.Y. Adelberg, E.A. and Ingraham, J.L. (1984), General Microbiology, IV edn. Mac Millan Press.
- Pelczar, M.J. Chan, E.C.S. and Krieg, N.R. (1986), Microbiology, V Ed. McGraw Hill.
- Prescott. L.M. Harley J.P. and L. Kreig D.A. (1990). Microbiology, WCB Publishers.
- Rosenberg, E & Cohen I.R. (1983). Microbial Biology. H.S. International Editions

15 hrs

15 hrs

8 hrs

7 hrs

	BACTERIOLOGY	
Subject code: MMBLS1-102	L T P C 3 104	(Duration: 60hrs)

Course Objective:

This module gives detailed understanding about bacteria, its structure and growth conditions and the various factors affecting the growth of bacteria.

Course Outcomes:

Identify cell structures and its organization The different methods of sterilization and isolation of pure cultures Explain growth and reproduction in bacteria Classify bacteria based on specific characteristics

Unit-1

General characteristics of bacteria. Bacterial growth, Synchronous growth, Continuous culture Measurement of growth, Cell division and reproduction.

Unit-2

The Archaea and Deeply Branching Phototrophic Bacteria: Domain Archaea; Methanogens, Thermoplasmas, Extremely Thermophilic sulphur metabolizers.

Unit-3

Domain Bacteria; TheDeinococci and Nonproteobacteria Gram Negatives: Aquifical and Thermotogae, Deinococcus- Thermus, Photosynthetic Bacteria: Chloroflexi, Chlorobi, and Cyanobacteria.

Unit-4

Phyla Planctomycetes, Chlamydiae , Spirochaetes and Bacteroidetes. The Proteobacteria; α -proteobacteria, β -proteobacteria, δ -proteobacteria and ϵ -proteobacteria.

Unit-5

The low G+C Gram Positive Bacteria: Clostridia, Mollicutes, Bacilli. The high G+C Gram Positive Bacteria; Actinobacteria, Planctomycetes, Spirochetes, Fibrobacters, Bacteriodes, Fusobacteria.

Books Recommended:

- Holt, J.G., Krieg, N.R., Sncath, P.H.A., Atalay, J.T. and William, S.T. (Eds) Bergey's Manual of Determinative Bacteriology, 9th Edition (William R.Hensyl Ed)
- Davis, B.D. Delbecco. R. Eisen, H.N. Ginsberg. H.S. and Wood, W.B. Jr. Microbiology, Harper & Row, 2006
- Stanier, R.Y., Ingraham, J.L. Wheelis, M.L. and Painter, P.R. General Microbiology, Mac. Millan Press Ltd. U.K., 2005
- Prescot, L.M., Harley, J.P. and Klern, D.A. Microbiology 6th Edition, McGraw Hill, London (2005).
- Willey, J.M., Sherwood, L.M. and Woolverton, C.J. Prescott's Microbiology 9th Edition, McGraw Hill Education, (2014).

5 hrs

10 hrs

15 hrs

15 hrs

	VIROLOGY			
Subject code: MMBLS1-103	L T P C 3 1 0 4	(Duration: 60 hrs)		
Course Objective: The objective of this course is to give an exhaustive account of viruses, their structure, classification, replication and diseases associated with them, and their prevention and control methods. The course also deals with various applications of virology.				

Course Outcomes:

Learn about diseases caused by medically important viruses, samples collection and laboratory diagnosis of some important viral infections.

Unit-1

Historical account and development of virology. General characteristics, envelope, capsid, nucleic acid & classifications of animal & bacterial viruses. One step growth curve of phages,

Unit-2

Isolation & purification of viruses. Cytopathic effects of virus infection. Assays of viruses, biophysical properties of viruses and point, thermal inactivation, dilution end point, longevity invitro, virus culture.

Unit-3

Chloroplast agglutination, haemagglutination, serological & molecular based detection of viruses. Attachment and entry of enveloped and non-enveloped animal viruses, Replication strategies of animal viruses,

Unit-4

Insect Transmission of plant viruses, Role of viruses in genetic engineering. Brief concept of viroids and prions. Viral diseases of plants (papaya, banana, tomato): symptoms, transmission, virus & control.

Unit-5

Viral diseases of animals (Ranikhet disease of poultry farm, foot & mouth disease of cattle, bird flu & SARS). Clinical symptoms, pathophysiology, diagnosis and control of viral diseases in humans (Influenza, hepatitis, polio, Zika, Dengue, AIDS)

Books Recommended:

- Cann, Allanj. 1997. Principles of Molecular Virology, Academic Press London.
- Mathews REF 1998. Plant Virology, Academic Press, London.
- Viruses & Mycoplame diseases in India, Raychandri, S.P. & Nariani, T.R. 1994. Malhotra Publishing House. New Delhi.
- N. Dimmock, A. Earton and K. Leppard : Introduction to Modern Virology, Blackwell Publishing (2007)
- E.K. Wagner and M.J. Hewlet. Basic virology (2nd Edn) Blackwell publishing (2004)

10hrs

15 hrs

15 hrs

15 hrs

MYCOLOGY AND PLANT PATHOLOGY

Subject code: MMBLS1-104

LTPC 3 1 0 4

(Duration: 60hrs)

Course Objective:

This gives us detailed knowledge about the growth, lifecycle and metabolism of microbes in plant.

Course Outcomes:

detailed knowledge about morphology of microbes, mycology, parasitic disease associated in plants.

Unit-1

Introduction, history, thallus organization, cell structure, Mode of nutrition, nutrient requirements of fungi, sexual (methods of plasmogamy) and asexual reproduction, fungal hormones, heterothallism, parasexuality in fungi.

Unit-2

Brief account of systems of classification. Distinguishing characters and general life cycles of Oomycota (Saprolegniales), Zygomycota (Mucorales), Ascomycota (development of ascus; ascocarps), Basidiomycota&Deuteromycota. Origin and Phylogeny of fungal kingdoms.

Unit-3

Fungal diseases of plants: Symptoms, transmission and control measures (biological, chemical, regulatory, physical). Rust and loose smut of wheat, red rot of sugarcane, late blight of potato, ergot of rye.

Unit-4

Physiological responses of plants to pathogen: effect on respiration, photosynthesis, translocation of nutrients and water. Economic importance of fungi: Role of fungi in biodegradation, biodeterioration, medicine, food industry, enzyme production, biological control & mushroom production.

Unit-5

Fungi as symbionts: Mycorrhizal associations-ectomycorrhiza, endomycorrhiza & ectendotrophic mycorrhiza; Lichens: thallus organization, economic importance.

Books Recommended:

- Alexopolous, C.J. and Mims, C.W., Blackwell, M (1996). Introductory mycology. IV edn., John Wiley and Sons inc., New York.
- Mehrotra, R.S. and K.R. Aneja. (2015). An introduction to Mycology. New Age ۲ International publishers.
- Agriose, G.N. 2005, Plant Pathology, 5th edition Publisher: Academic Press.
- Carlile, M.J. Watkinson, S.C. and Gooday, G.W. (2001) The Fungi. Publisher: Academic Press.
- Singh, R.S. (2009) Plant diseases. Oxford and IBH publishing company, New Delhi.
- Moore and Landecker. (1972) Fundamentals of the fungi. Publisher: Prentice Hall

15hrs

15hrs

10hrs

15hrs

MRSPTU M.SC. (MICROBIOLOGY) SYLLABUS BATCH 2021 ONWARDS (2 YEARS COURSE)

MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY					
Subject code: MMBLS1-105	LTPC	(Duration: 60hrs)			
	3104				

Course Objective:

Students will be able to learn the terminology of the subject and knowledge of cell division, growth and metabolism of microorganism.

Course Outcome:

Describe the different level in prokaryotic and eukaryotic cells. Explain the neutrition classification in the microorganism.

Unit-1

Scope of studies on physiology and metabolism of microorganisms. Differences in level of organization of eukaryotic and prokaryotic cells, Biochemical components of microbial cell, Structure and function of different organelles (cell wall, cell membrane, capsule, flagella, pili/fimbriae, mitochondria, chloroplast, inclusion bodies, golgi apparatus, endoplasmic reticulum etc.).

Unit-2

Modes of nutrition, classification of microorganisms on the basis of energy and carbon source requirements. Role of vitamins and growth factors. Growth of microorganisms, phases of growth, parameters for measuring growth. Factors (pH, temperature, availability of oxygen and osmolarity of medium) affecting growth of microorganisms.

Unit-3

Brief account of cell division in Gm-ve and Gm+ve cocci/rods, Resting forms in microorganisms, Endospore formation and its regeneration, salient genetic and biochemical events involved in endospore formation. Bioenergetics, basic concepts, redox pairs in energy productions, substrate level, oxidative and photo phosphorylations, chemiosmosis and components of ETC.

Unit-4

10hrs Intermediary metabolism of carbohydrates (Important pathways for breakdown of glucose), formation of precursors and reducing power. Nitrogen assimilation and Control of glutaminesynthetase, Nitrogen fixation; components involved and their interaction with general nitrogen regulation (Ntr system) Biosynthesis of cell wall, nucleotides and amino acids. General account of control of branched anabolic pathways

Unit-5

Groups of microorganisms with C1 metabolic systems, General properties of Archaebacteria, Salient features and differences from eubacteria and eukaryotes. Brief account of physiology of thermophiles, halophiles and methanogens. Methanogenesis

Books Recommended:

- Conn E.E. & Stumpf, P.K. (1988), Outline of Biochemistry John Wiley & Sons. •
- Gottschalk, E. (2006). Microbial Metabolism Springer Verlag. •
- Moat, A. and Foster, J.W. 2006 Microbial Physiology. 4th edition, Wiley-Liss. •
- Edwards, Clive, 1990. Microbiology of Extreme Environments. Mc Graw Publishing.

15hrs

15hrs

15hrs

Subject code: MMBLS1-106

LTPC 3104

(Duration: 60hrs)

Course Objective:

To learn the various statistical methods used for the collection of the data.

Course Outcome:

Students will be able to learn hypothesis, probability, various methods of hypothesis testing and analysis of variance.

Unit-1

Statistical Methods — Collection of data, Frequency distribution and, Measures of Central Tendency, Dispersion.

Correlation and Regression — Relationship between variables, Covariance, Karl-Pearson's Correlation Coefficient, Spearman's rank Correlation Coefficient, Least square technique for regression lines (without proof), Regression Coefficients, Relationship between Correlation analysis and Regression Analysis.

Unit-2

Probability — Mathematical definition of probability of an event, Use of permutations and combinations in calculations of Probability, Conditional probability, Additive and Multiplication law of Probability, Random Variables and its pmf, pdf, cdf, Mathematical expectation and variances, Theoretical Distributions: Binomial, Poisson and normal, Properties of these distributions (applications only).

Unit-3

Hypothesis Testing — Sample, Population, Statistics and Parameters, Null Hypothesis, Level of significance, Definitions of Chi-square, 't' and 'F' variates and their pdfs only, Applications of these distributions in testing of hypothesis.

Unit-4

Large sample test- Testing of significance of proportion in single population, Testing of equality of proportions in two populations, Testing of significance of mean in single population, Testing of equality of means in two populations.

Unit-5

Analysis of Variance — Meaning of analysis variance with linear models, Analysis of variance for one-way classified data, Analysis of variance for two-way classified data with one observation for cell.

Reference Books:

- Bland, M. (2006). An Introduction to Medical Statistics. Oxford University Press, 3rd ed.
- Finney, D.J. (1980). Statistics for Biologists. Chapman and Hall Ltd. •
- Hoel, P.G. (1971). Elementary Statisitics. John Wiley and Sons, 3rded. •
- Ross, S.M. (2005). Introductory Statistics. Academic Press, 2nded. •
- Wayne, W, Daniel (1999). Biostatistics: A Foundation for Analysis in Health Sciences. • John Wiley and Sons, 7thed.
- Woodworth, G. (2004). Biostatistics: A Bayesian Introduction. John Wiley and Sons.

5 hrs

15hrs

15hrs

10 hrs

MRSPTU M.SC. (MICROBIOLOGY) SYLLABUS BATCH 2021 ONWARDS (2 YEARS COURSE)

MICROBIOLOGICAL TECHNIQUES-I (PRACTICAL)				
Subject code: MMBLS1-107	L T P C 0 0 4 2	Duration: 4hrs/week		

Practical

- Study of typical compound microscope
- Micrometry measurement of a fungal spore
- Determination of cell density by counting chamber
- Isolation of bacteria from soil, air and water
- Isolation of fungi from soil
- Contact slide technique
- Streak and Pour plate techniques
- Development of a single colony of a bacterium

MICROBIOLOGICAL TECHNIQUES-II (PRACTICAL)

Subject code: MMBLS1-108

L T P C 0 0 6 3 (Duration: 6 hrs/week)

Practical

- Preservation of microorganisms, Subculturing on agar slants Preservation in soil preservation by overlaying cultures with mineral oil Preservation in glycerol stocks
- Stab culturing technique for motility demonstration
- Hanging drop technique
- Simple staining of a bacterium
- Negative staining of a bacterium
- Gram staining Positive and negative